
<c> 1981

I
The BASIC/S Compiler System

Hod I or III - 48K required
and 1 disk drive. (2 preferable>

Published by PowerSoft
a div. of Breeze/QSD

Contains BASIC/Sand BASICSII/CMD

Documentation by: Bill Stockwell
Final editing bya Renato Reyes, PHD

& Dennis A. Brent

First printing - March, 1982

-db

liiilblEHSliilF-Y-
((tm)

11500 Stemmons Freeway, Suite 125 -- Dallas, Texas 75229

Introduction to the BASIC/S Compiler System Page 1

The BASIC/S Compiler System consists of two main programs -
BASIC/S and BASICSII/CMD - along with numerous supplementary files.
Both BASIC/Sand BASIC/S II are compilers for a large subset of
TRS-80 Disk BASIC - the first one, BASIC/S, is itself a BASIC program
while BASICSII/CMD is a machine language version, compiled by
BASCOM(c). The difference between them is that BASIC/S supports the
full BASIC/S subset, while BASIC/S II is an integer compiler. It does
not support floating point. Other than that, the two compilers
support essentially the same BASIC subset. You get both compilers in
one package. In general, one would want to use BASIC/S II (because of
its speed>, but when your application requires floating point, then
BASIC/Sis available.

Both compilers will run under virtually any Mod I/Mod III DOS,
e>:cept TRSDOS Mod III. At least 48K and one disk drive are required
to use BASIC/S. (Two drives are preferable).

Note : BASIC/S II does NOT run under Mod III TRSDOS due to the way
the FCB is handled, (R. Shack~s weirdness, not ours). For Model III~
use ANY other DOS, <LDOS, NEWDOS/80, DOSPLUS, or Multidos).

It will compile up to a 260 line program - compiles into a /CMD
file with no linking or run time module needed. No royalties are
required for programs you write and compile with BASIC/S. A mention
in the program and doc would be appreciated. ("Compiled by BASIC/S 11

).

The /CMD files created by BASIC/S are very reasonably sized.
Typically, they are only 1.2 - 2 times the size of your original
BASIC source file. Quite often, if your source file is only 1
granule, then so is the /CMD file made by BASIC/S.

The name BASIC/S means BASIC/Subset. It does NOT compile full
blown BASIC. It DOES support MOST of Level II Basic as well as the
essential elements of sequential and random disk I/0" including LRL <
256. BASIC/S allows dimensioning arrays of all variable types, with
up to two dimensions; any one program can have up to 20 arrays.
Also, BASIC/S compiled programs can chain from one to another with NO
loss of variables.

BASIC/S syntax is, in general, much more restrictive than
regular Disk BASIC. Expressions need to be broken down to simple
forms for the most part. Therefore, most programs will have to be
rewritten to be compiled with BASIC/S. One area where the synta>: is
NOT so restrictive is in math expressions involving floating point
variables (for BASIC/S, not BASIC/5 II> - thus

A=7*SIN(X+Y*COS(A+B/C)-SQR(1/Z)*ARRAY(N%))

would be perfectly OK (just be sure to dimension ARRAY ~)

Following is a list of the command/keywords/functions

<c>1982 by Breeze/QSD, Inc.

Introduction to the BASIC/S Compiler System Page 2

supported by BASIC/8:

DEF FN OPEN (
11 R11

, "O", 11 I 11
, "E") LINE INPUT# PRINT#

CLOSE GET PUT FIELD CLEAR
Ml<I CVI Ml<S CVS LSET
RND RANDOM CLS LOF IF
PRINT PRINTG> LPRINT INPUT ABC
CHR$ VAL STR$ LEFT$ RIGHT$
MID$ (both sides of =) INSTR INKEY$ LEN
GOTO GOSUB RETURN CINT CSNG
SET RESET POINT PEEi< POl<E
INP OUT AND OR FOR
NEXT USR DEFUSR DATA READ
RESTORE RUN (as in RUN A$, A$=any dos command) SIN
cos TAN ATN EXP LOG
ABS SQR INT SET EOF SCAN
HEX$ CMD ON GOTO ON ERROR

STARTING OFF •••

There are 2 diskettes contained in this package; both are self
booting (on either a Mod I or Mod III) - just boot each disk in
turn it will display the files it has, prompt you for a
destination drive, and dump the files to it. The destination
drive must already be formatted <TRSDOS format, I or III).
Single drive owners need to prepare 3 (yes, three!) disks
("stripped down&$$TRSDOW, with at least 50K free on each one).
Boot the MASTER disks enclosed with this package, and follow the
i nstr.ucti ons on the screen. You wi 11 be prompted for the disk
swaps.

Note: If you are using a Mod III, you are aware that BASIC/8 is
NOT compatible with Mod III TRSDOS. You still, however, need to
"dump" the contents of your enclosed MASTER disks to a TRSDOS/III
format. After the programs are on YOUR disks, you may "convert",
"repair", or whatever operation the DDS you intend to use
requires for accessing TRSDOS/III files.

Contents of the Disks:

Disk 1: BASIC/S
COMPILER/DAT
QUICK/BAS
REMPER/BAS
BINHEX/BAS
SQR/BAS
SPACEWAR/BAS
SHELL/BAS

- These two programs
- go together.

(c)1982 by Breeze/QSD, Inc.

Introduction to the BASIC/S Compiler System Page 2

CALC/BAS
COMPARE/BAS -the last four are for BASIC/8 only-

Disk 2: BASICSII/CMD
COMPILE/DAT
FLOAT/TXT
FLOAT/BAS
FLOAT/CIM

- these two programs -
go together

For day to day use, you just need BASIC/Sand COMPILER/DAT.
<BASICSII/CMD and COMPILE/DAT in the case of BASIC/8 II>.

Each compiler has its own DAT file, which contains most of the
data that is used to make up the /CMD files created by BASIC/S.
Once BASIC/Sis in memory and vunning, you can take the disk
with BASIC/8 on it out of the drive -- you only need the correct
DAT file (and your source file) on line while compiling. The
other files on the disks are supplementary files - mostly
examples of BASIC/8 compilable programs, to give you an idea of
how to write BASIC/8 code. By and large, it is not so different
than writing any other BASIC program; you just have to watch
your syntax more closely, and be aware that your program will be
running in a compiled environment.

Following is the documentation for the two compilers~ starting
first with BASIC/S, and winding$up with BASIC/8 II.

(c)1982 by Breeze/QSD, Inc.

BASIC/S Documentation Page 1

* * * * * * * * * * * * * * * • * * • * * * * * • • * • • * •
* BASIC/S COMPILER *
* <C> 1981 by Bill Stockwell and Breeze/QSD *
* -Version 3.7 for Mod I and III- *
* -All Rights Reserved- *
* Published by: Breeze/QSD, Inc., Dallas, Texas •
* * * * * * * • * * * * * * * * * * * * * ' * * * * * • • * *

Setting Started Using BASIC/S:

IMPORTANT!! There is a variable in BASIC/S, in the very first line,
which tells BASIC/S what disk operating system you are using.
Currently, this is used so that LOF calculations will be done
properly ie when you compile a program that does an LOF
calculation, it is important for the compiler to know what DOS is
being used so that this calculation will be done properly. (The
assumption is that you will run your /CMD files under the same system
that they were compiled on. If this is not true, you need to change
the variable as explained below and recompile under the other DOS).

The variable in question is KS, and is found at the end of line 1 of
BASIC/S. It is now set as KS= 5. This is the correct setting for
LDOS <tm>.

Here are the other values:
Use KS=3 for Mod III TRSDOS
KS=4 for DOSPLUS 3.3 or earlier
and 0 for all other nos~s.

You can make this change and save BASIC/S with it, or you
can specify KS when you RUN BASIC/S; when this is done,
it overrides the KS setting in line 1. See the section on
RUNNING the compiler for details.

On the disk you receive, there will be just one copy of BASIC/S,
one of COMPILER/DAT, and some supplementary demo and utility files.
Copy these to a disk of your own.

It is a good idea at this time to compile one of the sample
programs on the disk. SHELL/BAS, LOOK/BAS, SPACEWAR/BAS, and
COMPARE/BAS are all BASIC/S compilable. SHELL/BAS is a Shell
Metzner sort program which will sort an ASCII sequential disk file
of up to 79 strings; after you compile it, you invoke it via SHELL
OUTPUT=INPUT from DOS READY mode, where INPUT is the file you want to

<c>1982 by Breeze/QSD, Inc.

BASIC/S Documentation Page 2

sort, and OUTPUT is a new file which you want the sorted file to
be written to. Don~t try to run SHELL/BAS from BASIC <as is). It
checks the DOS command buffer at 4318H for the file specifications,
which will not be meaningful from BASIC. TEST/DAT is a file for
SHELL to sort. After compiling SHELL/BAS execute the /CMD file via
SHELL OUT=TEST/DAT <where OUT is your output file). To compile
SHELL/BAS, you should get into Basic and RUN"BASIC/S", making sure
that COMPILER/DAT and SHELL/BAS are on line; when BASIC/S asks
"Files, options?", respond with:

SHELL/BAS,SHELL/CMD,,56000 <enter>

This way, your command file will be placed into high memory, making
room for a string array of dimension 79 (TS> in low memory. If you do
not specify a starting address <which you normally wouldn~t>, it will
default to 5200H, which means that the T$ array will be placed in
high memory, where there is room for only 37 strings (and that~s
counting all the way up to FFFFH !). No problem if your file is no
more than 37 strings long AND you have no high memory drivers in
place; otherwise •••
See below for more information on running BASIC/S.

COMPARE/BAS allows you to compare 2 files to see if they are the
same.

SPACEWAR/BAS is a fast paced, real time shoot the Klingons game. You
can run it in Basic or as a /CMD file after you compile it, but it
runs MUCH faster compiled!

Also there is CALC/BAS, which is a DOS level calculator
<after being compiled). See the remarks at the beginning
of this program for more details.

For the most part, these programs allow you to become familiar with
the rather restrictive syntax of BASIC/S.

The version of BASIC which is supported is a subset of Disk Basic.
Only simple expressions and variable names are allowed, but most
of the features and built-in functions of Level II are
implemented, along with the essential elements of sequential and
random disk I/O.

Note: Unlike regular BASIC, programs compiled by BASIC/S do NOT
have any initialization of variables done. Thus numeric variables do
not start out as zero, or strings as null. <See the CLEAR statement,
however>. One advantage of this approach is that one compiled
program can invoke another (using the RUN statement) and all
variables will be preserved.

Use of constants in BASIC/Sis somewhat restricted; many statements
allow (real or integer> constants; most statements do NOT allow
string constants. See the section below on the individual statements

<c>1982 by Breeze/QSD, Inc.

BASIC/S Documentation Page 3

for more details.

You may have multiple statements per line; the only restriction
here is that IF, GOTO, and GOSUB statements <and ON GOTO
statements, also> must begin the line they are on. Spacing is
critical when writing a program to be compiled by BASIC/S; in
general, use spaces only to separate keywords from identifiers <FOR
N%=A% TO B% rather than FOR N%=A7.TOB%).

Look over some of the sample programs on the disk to see how
statements are to be coded. The syntax must be followed ••••

-------> EXACTLY!! <-------
The compiler allows the following variable names (all single
letters): integers AX thru z;., reals A-Z, and strings A$ thru 2$.
Also, you may dimension arrays of any of these three types, and your
array names can be any length, with every character significant.
See the DIM statement for more on this.

REQUIREMENTS::

A TRS-80(c) Mod I or III with at least one drive and 48K.
Repeat ••• 48K. Two drives are preferable.

RUNNING THE PROGRAM:

BASIC/S uses some USR routines (in the F000-F100 area>,
so you MUST set memory size at 61440 cx~F000~> to run it. If
you are using LOOS, you should set BLK=N as well. DOS+
requires you to specify the number of files; for BASIC/S,
that number is 3. Also, use TBASIC when running under
DOS+. Be sure that COMPILER/DAT and your program to be
compiled <saved in ASCII> are on line when you run BASIC/S.
REPEAT •••• your program to compile MUST be saved in ASCII!

e.g. SAVE"FILENAME/BAS",A <enter>

(the /BAS extension is NOT required)

Now BASIC/Swill ask:

Files, options?

The typical response will be in the form::

SOURCE,OBJECT

(c)1982 by Breeze/QSD, Inc.

BASIC/S Documentation Page 4

e.g. TEST,TEST/CMD where TEST is the name of the ascii Basic program
you want to compile, and TEST/CMD is the name of the load module you
want to create. You may specify drive specs after either file name.
It is best if the OBJECT file does not already exist. If it does
exist, BASIC/S will kill it before continuing. No big deal, but it
takes a little longer.

Three other parameters may be specified here. The first will produce
output to the system line printer (in the form of source code and
errors>, while the second will tell BASIC/S where the load module~s
start point is to be. To specify line printer output, 'just put a *
<or $PR, or *pr, or *anything) as the third parameter. The address,
if present, should be a decimal integer in the fourth position. It
may be positive or negative - Basic/swill respond correctly either
way. Thus, complete syntax to the "Files?" question is:

SOURCEFILE,OBJECTFILE,<tPR>,<ADDRESS>,<S=n>

Here the brackets "<>"are NOT to be typed, but indicate optional
entries. If no printer output is wanted, but an address is to be
specified, then the third parameter should be null - ie, present, but
null or blank as indicated by two adjacent commas.

The S= sets KS, so that you may tell BASIC/S what DOS you are using
at run time. Use S=3 for Mod III TRSDOS, 5=4 for DOS+ 3.3 or
earlier, S=5 for LDOS, and S=0 for all others. If the S= option is
present, do not use nulls for the SPR or address options; if they are
present, fine, but if not then leave them out .. If tPR is not
present, but address IS present, then leave an extra comma for the
absent $PR.

Here are some examples:

TEST/BAS,TEST/CMD:1,,56000
TEST,TEST/CMD:0,S=3
TEST,TEST/CMD:@,,56000,S=@

The compiler gets much of the data needed to compile your program
from a random access disk file <COMPILER/DAT>. Be sure this file is
on line when you use BASIC/S.

THE BASIC/S SUBSET (Statements supported under BASIC/S) :

PRINT

followed by a SINGLE variable name, or an expression in
quotes. Thus:

(c)1982 by Breeze/QSD, Inc.

LPRINT

INPUT

BASIC/S Documentation

PRINT Ao/. or
PRINT"Message"

Page 5

Also, you may use a semi-colon after anything being
printed in order to suppress the carriage return.

PRINT@ is also supported just set any integer
variable to the value of the location to be printed
at, and you may then use any of the above forms with
it. Thus:

PRINT@N7.,"TRS-80";

Syntax for LPRINT is in every way the same as for
PRINT, except of course that LPRINT@ has no meaning.

You may input a single variable, of any type. You may
not input a list of variables, but INPUT"PROMPT";A is
supported (or A7., or AS). Note: Spacing is important
in BASIC/S. Do not run keywords and variable names
together -- use a single space in between them.
When executing a Basic/s compiled program, if input
is requested, hitting the <break> key will cause an
exit to DOS READY.
Also, if in answer to an input prompt, you hit <Enter>
only, then the variable being inputted remains
unchanged and the program continues (just like
regular BASIC -- and this holds regardless of variable
type (integer, real or string>>.

LINE INPUT

RUN A$

LINE INPUT from the keyboard is supported. Syntax is
exactly as it is in BASIC. You can even make LINEINPUT
one word if you like. You may LINE INPUT a real or an
integer variable if you wish, although this would not
,work in BASIC.

e.g. LINE INPUT A$ or
LINE INPUT "Prompt";A$ (just like in BASIC>

This statement allows you to set a string (A$ in this

(c)1982 by Breeze/QSD, Inc.

CLEAR

GOTO ln

BASIC/S Documentation Page 6

case) to any DOS command, or the name of a command file
you wish to invoke, and to exit the current program and
have that command executed. Do NOT say RUN"PGM"; this
will be not be correctly compiled! Also, RUN by itself
is incorrect. The program being run, if compiled by
BASIC/S, will NOT disturb the current values of BASIC/S
variables. Thus you can chain from one BASIC/S compiled
program to another with no loss of variables.

This statement, with or without an argument, will' cause
BASIC/S variables to be zeroed out. It depends on where
your /CMD file starts; if your /CMD file is in low
memory, then all memory from 41216 (decimal) up to
HIGH$ will be zeroed out, while otherwise 5200H up to
D6D8H is zeroed out. This makes sure that your /CMD
file itself will never be affected, but that your
variables will be zeroed. This works equally well on
the Mod I or the Mod III - Basic/s knows which machine
you are running it on, and will use the correct HIGH$
for your machine. DATA will also be cleared, and an
automatic RESTORE done so that the DATA pointer will be
correct.

The GOTO statement. Do not space between the 60 and the
TO. DO space between the GOTO and the line number.

GOSUB ln

DEF FN

The standard GOSUB statement. Be sure your GOSUB~s and
RETURNS match up properly, or your /CMD file may crash.

This statement works almost exactly as in BASIC, the
only limitations being that the right hand side must be
already handleable by BASIC/Sas in a normal assignment
statement, and also only one argument is allowed. Thus
it would be most useful in the case of the target
variable being real, with the right hand side a real
expression (see the section on assignment statements).
But the argument and the target may be any type (real,
integer, or string). Although only one argument is
allowed, you may use any other variables you like on
the right hand side -- but they won~t be dummy.
Note: Constants may be used (real and integer,

(c)1982 by Breeze/QSD, Inc.

BASIC/S Documentation Page 7

anyway>.

READ/ DATA/ RESTORE

RESTORE

IF

Your program may have DATA statements, containing
integer constants only <as in DATA 1,2,3) -- in all of
your DATA statements you can have a total of 383
integers (no more>. It is important that these DATA
statements come before the READ statement(s) that are
to access them (physically before, that is) -- the
compiler generates code to place the data in memory
when the DATA statements are encountered. Syntax for
the READ statement is READ N7. -- you can read only a
single integer variable, which would normally be done
in a FOR/TO loop. One big use for this is to poke DATA
for a USR routine into memory. Before BASIC/Sallowed
READ/DATA, this process was rather clumsy.

works just like in standard BASIC.

A very restricted IF statement -- you may only compare a
floating point expression with zero, or two strings,
or two simple integers (variables or constants). For
floating points, syntax is:

IF X<0 THEN 100
or IF Z=0 THEN 80
or IF SIN<AtB-C><0 THEN 200

(more on real expressions later>.

The variable must be on the left. For strings, you can
say

IF A$<B$ THEN 20
or IF A$=B$ THEN 100

The compare must be in the'<' direction only, or with
,=~. You may check whether a string is null via

IF A$="" THEN 200 (for example)
but this is the only time you may test a string against
a constant.

For integers:
IF A7.=B7. THEN 100

or IF A7.<B7. THEN 50

(c)1982 by Breeze/QSD, Inc.

BASIC/S Documentation Page 8

<and either A% or B7. may be an integer constant, as
in IF A7.<72 THEN 200).

*** Note: GOTO, GOSUB, and IF statements MUST
begin the line that they are on. Also, ELSE is now
supported by BASIC/S; you may follow an IF statement
with ELSE, and then as many statements as you like, as
long as they aren•t the type that must start the line
they are on <IF, GOTO, GOSUB and ON GOTO). Thus:

IF EOF(l) THEN 200 ELSE LINE INPUT#1,A$:AS=A$+B$ '

FOR/NEXT

USR

The For/Next loop is implemented for INTEGERS only. You
may code

FOR A7.=B7. TO C7. (spacing important!>

NEXT A%

Constants may be used where 97. and C7. are indicated,
as long as they are integers (positive, negative, or
zero). Just be sure to use a single space after FOR
and before and after TO. The variable in the NEXT
statement is NOT optional. There is no STEP clause.
FOR/NEXT loops may be (statically) nested.
The lack of the STEP clause is not a great problem;
for example, to do FOR 17.=5 TO 100 STEP 5, do this:

FOR I7.=5 TO 100

I7.=I7.+4:NEXT I%

A single USR call is allowed. It must be
DEFUSR, and the calling address must be
decimal integer constant. Thus:

DEFUSR=-1000

set up by
a simple

Note: There is no VARPTR statement. However, the
addresses of all simple variables in BASIC/Sare always
the same and may be calculated as follows:

REALS : If the ascii code for
A, then the VARPTR
-11535+4*<A-65).

INTEGERS: -11406+2*<A-65).

the variable is
will be

(c)1982 by Breeze/QSD, Inc.

BASIC/S Documentation

STRINGS : -23192+256*<A-65).

Page 9

Strings are stored a little differently than in Level
II. Each string is allocated 256 bytes, the first of
which contains the length of the string <0 to 255) and
the rest of which contain the string itself. The
Varptr points to the length byte.

Y7.=USR(X7.>

This causes the routine whose address was defined by a
previous DEFUSR statement to be called. The current
value of X7. is loaded into the HL register pair before
the call is made, and on return, V7. is given the value
in the HL register pair. Do not use the ROM routines
at 0A9A and 0A7F for this. Any integer variables may
be used, not just X7. and V-1.. Also, a (decimal) integer
constant may be used as the argument to be passed.

SET, RESET, and POINT

Use integers (either variables (followed by 7.) or
constants) as the arguments. As with most BASIC/S
functions, they may not be used in more complex
expressions. Thus

SET(X7.,20)
A7.=POINT<B7.,C7.)

The latter is the only way to access POINT - it cannot
be invoked in an IF statement.

PEEK and POKE

Exactly as in Level II, except that
the arguments must be integers -- (constants
or variables). Thus

INP and OUT

A7.=PEEK(M7.>
POKE A7.,B7.
POKE 15360,191
Z7.=PEEK(14312>

Syntax here is just like that for PEEK and POKE,
i.e. you may use integer variables or constants
as the arguments (no expres$ions>.

A7.=INP(P7.) (input a byte from port P7. and

(c)1982 by Breeze/QSD, Inc.

AND/OR

BASIC/S Documentation Page 10

OUT P%,V%
OUT 255,1
S%=INP(232)

store in A%)
(output value V'l.. to port P'1..)

You may use these two functions in order to calculate
an AND/OR result (for integer variables or constants>
and store the answer in an integer variable. Thus

X'1..=Y% AND 20
U%=A% ORB%

CLS -- Clear the screen

RND

DIM

Random numbers between 0 and 1 may be generated by the
statement X=RND<0>. The left hand side may be any real
variable. The argument is not actually required; you
can simply say X=RND if you like. The statement RANDOM
is also supported, to reseed the random number
generator.

You can DIMension up to 20 arrays in a program to be
compiled with BASIC/S - they can be integer, real or
string, as distinguished by%, s, etc. The array names
may be any length (up to 255> with every character
significant.

ONLY letters A-Z should be used for the array names.
<Actually, any characters except digits 0-9 may be
used, although you should avoid$ and% as they
are used to determine variable type).
Thus

DIM ARRAY(20,7),ST$(15),NUM%(50)

You may have one or two dimensions for each array - no
more. DO NOT use BASIC keywords in your array names.
Be careful about your available array space - BASIC/S
will tell you if your array space will overlay BASIC/S
data areas or the currently set high memory. It will
also let you know exactly where your array space lies-
if the latter number is FFFF, look out! That means that
your arrays are dimensioned too large <almost certainly).

(c)1982 by Breeze/QSD, Inc.

SCAN

BASIC/S Documentation Page 11

If this happens, try recompiling with a start address of
56000; this will give you about 19.75 K of space for
your arrays, as it puts your /CMD file in high memory
instead of low.
Still, 19.75K is only enough room for a string array of
dimension 79 (79 * 256 = 20,224). With real and integer
arrays, you can use much larger dimensions.

Syntax for using array elements:
For the most part, you can use your array variables just
like any other variables; and you may always use integer
constants (as well as variables> for the subscript's).
Thus

READ NUM% < I%)
INPUT ARRAVC7>
PRINT ST$(U%>;
A$=LEFT$(ST$(5>,NUM%CI%))

The exceptions are as follows:
When an array element is on the left hand side of the
'=' sign, the right hand side MUST be a simple variable
or constant (string or numeric> - no expressions
(or more array elements> allowed.

Also, any statement that references an array element
should contain NO numeric constants of any kind, except
for (possibly> subscripts to the array itself.
One exception here is that array elements may be
compared via the IF statement, and the line number
reference will not be misconstrued. So

IF ST$(1><ST$(I7.} THEN 75
is OK; just be sure to follow the syntax in all other
respects. But something like

LINE INPUT#1,ST$(I7.>
or PUT 1,L7.(I%}
won't work as the '1' will be misunderstood, and translated
to a temporary integer variable, which won't work.

This non standard statement, not found in regular
BASIC, allows you to read a file or device a byte at
a time, similar to INKEV$. Syntax is

SCAN b,A$

where b=DCB number, and the byte read (if any> is stored
in A$. The file or device must be opened first.

HEX$

BASIC/S Documentation Page 12

This statement is for hex conversion; it takes
an integer argument, and converts it to its hex string
equivalent. So if N%=255, then A$=HEX$(N%> would give
A$ the value "FF".

SET EDF

CMD

This statement is for use with LOOS only; it allows you
to truncate a random access file. Under BASIC/S, random
access files are limited to DCB numbers 1 or 2; so the
syntax is SET EOF1 or SET EOF2. To do it, you GET or
PUT the last record in the file that you want it to have,
and then SET EDF and CLOSE it to chop it off. For
e>:ample, if you wanted to chop a file off at 50 records :

R%=50:GET 1,R%:SET EOF1:CLOSE 1

Syntax here is just CMD A$, where A$ is any string
variable containing a command you wish to pass to DOS and
return from. Typically, you would compile a program that
uses CMD at 56000, or at least above the DOS command area
5200-6FFF (hex); otherwise your /CMD file will likely be
overwritten. Do not use CMD ">:>Dn: 11

; set a string variable
to the command you want.

ON ERROR

BASIC/S supports a limited form of error trapping; you
can trap DOS errors only using it. First, your ON ERROR
statement must appear AFTER the error trap routine itself.
Thus your program would typically start out branching
around the error routine, to the ON ERROR statement.
Thus:

50 ON ERROR GOTO 100

would not be legal, since line 100 comes after 50.
Secondly, while ERR is supported, ERL and RESUME are not.

It is very important that the very FIRST thing your error

(c)1982 by Breeze/QSD, Inc.

BASIC/S Documentation Page 13

trap routine does is Ai.=ERR <ie, set some integer
variable equal to ERR). If you wait to do this, ERR will
change and not be relevant. Also, this is the only legal
use of ERR; you must set an integer equal to it, period.
ERR will contain the DOS error code that was detected by
the DOS and returned in the A register; consult your DOS
manual to see which codes refer to which errors. A code
of 24, for e>:ample, means File Not Found. This does not
trap such things as division by zero or illegal function
call; only disk errors are covered here.

ASSIGNMENT statement :

Following are the allowed forms of the assignment statement.

REAL:

X=Y
X=const
X=-Y

(any var=any other var)
(var=constant value)
(var=-other var)

X=real expression

Here (and in the IF statement for real
e>:pressions) is the only place where BASIC/S can handle
comple>: expressions. A "real expression" is defined as
any combination of the real variables A-Z,
+,-,*,I, ,<,>, and the built-in functions SIN, COS,
INT, TAN, ATN,LOG, EXP, SQR, and ABS, and up to 4
constants. Thus::

Y=5*SQR(Z*SIN<2*X+C)), for example.

Be careful with constants - you may only have 4
"active" constants at one time (for each var type),
and this includes not only obvious constants, but
also unary minus signs - thus Z=2*<-X> would have
two constants (it would be translated into 2*(O-X)).
Important note -- if you divide by a
product, be careful. BASIC/S will interpret A/B*C as
A/(B*C> rather than the usual (A/B)*C~ This is due to
the right to left parsing algorithm that is used. Use
parantheses if in doubt. Another point is this: If
you calculate X Y (X to the Yth power>, this is done a
little differently than in Level II -- it is calculated
as EXP<Y*LOG(X)). Since LOG<X> is undefined for X<=O,
this will CRASH your BASIC/S /CMD file, whereas BASIC
will normally handle it if it makes sense as a real

(c)1982 by Breeze/QSD, Inc.

BASIC/S Documentation

number. So if you want to do such a calculation,
should check for X being O or negative.

X=CSNG(X%)

Page 14

you

You can use this function to convert integers to real,
but BASIC/S supports use of integer variables in real
e>:pressions, so it is rarely needed. (You may NOT use a
real variable in an integer expression, though). Thus,
X%=CINT(X) is a needed function, for converting reals
to integers; and this function may be freely used
wherever an integer variable would normally be e>:pected.
Thus SET<CINT<X>,CINT(Y)) or GET 1,CINT<R> would be
fine.

INTEGERS:

Integer arithmetic is limited to +,-,* and only 2
operands allowed on the right hand side. No builtin
functions for integers. Constants may be used, however.
Thus:

X%=A%*B%
X%=5-B%

Note that unary minus is not allowed here (for
variables) ie X%=-Y%+Z% is no good, while X%=Z%-Y% is
OK. Of course you may use unary minus if the right hand
side is a single variable, as in X%=-Y%c

STRINGS:

A$=B$
A$="constant"
A$=B$+C$ (simple concatenation)

Also we have the builtin string functions ASC, LEN,
CHR$, LEFT$, VAL, RIGHT$, MID$, STR$, and INSTR.
Where numeric arguments are required in the
string functions, simple integer variables or constants
must be used - no expressions. The actual string
arguments cannot be constants, but

A$=LEFT$CX$,2)

(for e>:ample) would be OK.

Also, e>:pressions must be reduced to their simplest
form e.g., concatenation within a function or
function composition is not allowed. Break it down!
Note: The INSTR function differs from the regular
DISK BASIC one in that no starting position may be

(c)1982 by Breeze/QSD, Inc.

BASIC/S Documentation

specified -- syntax is just NX=INSTR(AS,BS>.
However, unlike previous versions of BASIC/S, ALL of
BS is searched forj not just the first character.
MID$ note -- you can use MID$ on the left hand side

Page 15

of the= sign, and in that case, you can use either of
the two forms MID$(AS,NX>=B$ or MID$(AS,N%,L%)=B$
but they will give the same results, i.e. the length of
BS is used, LX is ignored in the second form. If the
source string (BS> is null, nothing is done.
Note III: The INKEYS function is implemented, and
must be used in the form: AS=INKEYS (or BS, etc.).
Also, VAL may be used for reals only; i.e.,

X=VAL(AS)

and conversely, STR$ works only on floating
point variables (AS=STRS(Y), for e:>:ample). Do NOT
use a constant as an argument to STR$.

DISK I/0 statements

Essentially, you have ten disk I/0 buffers available
for use (0-9), all of which may be used for sequential access,
and two (1 and 2} of which may be used for random access. Here
are the specifics:

OPEN

The OPEN statement is essentially that of disk BASIC,
e:>: cept that the f i 1 espec must be a string var i ab 1 e and
not an e:>:pressi on in quotes. Synta>: is

OPEN"m",b,FS<,r>
where m =mode= I,O,R, or E

b =buffer= (0-9) (constant only)
(must be 1 or 2 for direct access)

F$ = filespec (variable only)
r = logical record length (optional -- may be

either an integer constant or an integer
variable).

BASIC/S makes few restrictions on your use of the
disk I/0 statements, so be careful. For e>:ample, if
you wanted to open a sequential file with an LRECL of
16, you could. However, you would probably be well
advised to stick to direct access files for this!

(c)1982 by Breeze/QSD, Inc.

BASIC/S Documentation

OPEN"E" is like OPEN"O" e>:cept you start out
positioned at the end of the file.

Page 16

Sequential I/0 is done with the LINE INPUT# and PRINT#
statements. Just specify a buffer number adjacent to
the#, and you are ready to go. Only a simple string
variable may be input or output, although PRINT#l,A$;
will disable the carriage return.

Random disk I/0 is accomplished via the following:

FIELD

LSET

PUT

You must field your buffer in order
between your strings and the disk file
Syntax is :

FIELD 1,nn AS A$,mm AS B$,

to communicate
being accessed.

-- the buffer can be 1 or 2, the strings can be any of
A$ thru Z$ (no array references allowed here!}, and
the numbers ~nn 7

, ~mm 7 etc must be integer constants
(1-255 -- 0 is not allowed). Also you can 7 t really use
multiple FIELD statements for the same file.
-- the second will override the first. Moreover, the
statements to process a random access file must be
statically nested -- i.e. do not GOSUB or GOTO a later
line to FIELD a buffer and then return to do your LSETs
and PUTs, etc. Just OPEN the file, FIELD the buffer,
process it, and CLOSE it, without GOSUBS and GOTOS.
(At least, don 7 t branch anywhere outside the range
of statements between the OPEN and CLOSE stmts}.

To place your strings into the buffer prior to being
PUT to the disk, use LSET. Thus

LSET A$=B$ (spacing critical!)

where A$ is one of the strings mentioned in your FIELD
statement. If LEN(B$) is less than that of the field
variable A$, it will be filled out with spaces in the
buffer. If greater, only the leftmost portion of B$
(for the fielding length of A$) will be in the buffer.

(c)1982 by Breeze/QSD, Inc.

GET

LOF

BASIC/S Documentation Page 17

Syntax is PUT b,N% where bis
2) and Ni. is any integer
record number to be put. The
not optional.

the buffer number (1 or
variable, containing the
record number variable is

As in SET 1,R% -- gets the R%th record from the disk
file, and places its contents into the string variables
mentioned in the FIELD statement.

The LOF function is implemented and synta>: is

N%=LOF(b)

where b is the buffer number (1 or 2 -- must be a
constant). This returns the number of records in the
currently open file with buffer b. The setting of
the BASIC/S variable KS is critical when using LOF; be
sure it is set to the correct value for your DOS (3 for
Mod III TRSDOS, 4 for DOS+ 3.3 or earlier, 5 for LDOS,
and O for all others).

CVI and MKI$

CLOSE

For convenience in reading and writing integers
from/to direct access files, these functions are
implemented as in TRSDOS. In case you were mystified
as to exactly what they did -- well, if the integer N%
has the 2 byte representation <L,H>, then MKI$(N%} is
just CHR$(L)+CHR$(H}. CVI just does the exact reverse.
As with most BASIC/S functions, these may be used only
with simple integer/string variables.

Also implemented (completely similarly) are CVS
and MKS$. Since BASIC/S doesn~t support double
precision, CVD and MKD$ are not implemented.

There is no global close in BASIC/S -- you must mention
the buffer number. Thus,

CLOSE 5

would close the file with buffer number 5. If you close

(c)1982 by Breeze/QSD, Inc.

BASIC/S Documentation Page 18

a file that isn't open, you will bomb out with 'FILE
NOT OPEN'.

EOF

This isn't a function as such; it is to be used in a
special form of the IF statement to check for EOF when
inputting from a sequential file. Simply say

IF EOF(b) THEN 200

(or whatever line number) to check for end of file on
buffer b (0-9)

BASIC/S Memory Map

Following is a map of memory from 5200H up to HIGH$, showing
how BASIC/S uses the memory in your TRS-80 (48K):

/CMD file in low mem

5200 ----------

your /CMD file

A100 ----------

in high mem

Array space (20K)

This area is always reserved for BASIC/S variables
and DGB"s.

D7DB ---------

Free area for your own use (e.g. USR routines).

DAGO----------

Array space
<DAGO to HIGH$)

HIGH$----------

/GMD file

----------===

(c)1982 by Breeze/QSD, Inc.

BASIC/S Documentation Page 19

--DISCLAIMER OF WARRANTIES & LIMITATIONS OF LIABILITIES

We have taken great care in preparing this package. We make no
expressed or implied warranty of any kind with regard to this manual
or to BASIC/S. In NO event shall we be liable for incidental or
consequential damage in connection with or arising out of the
performance of this program.

BASIC/S (c)1981 by Bill Stockwell and Breeze/QSD, Inc.

All rights reserved. No part of this manual and NONE of,the programs
may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by
information storage retrieval system, BBS, etc. Registered owners are
entitled to make copies of the disk for their OWN use only!

Questions should be addressed to:

Bill Stockwell
4771 NW 24th #228N
Oklahoma City OK 73127
(405) 947-4156
Mnet 70070,320

Bill Stockwell may also be reached on the QSD Sig
on MicroNet. Leave a message to 70001,610 for info
or from the OK prompt, type R QSD<enter>.

Published by:
Power-Soft - a division of Breeze/QSD, Inc.
11500 Stemmons Expressway Suite 125
Dallas, Texas 75229

TRS-80 and TRSDOS are registered copyrights of the TANDY CORP.
LDOS is a registered trademark of Logical Systems, Inc.
Newdos and Newdos/80 are trademarks of Apparat
Dosplus is a trademark of Micro Systems Software

(c)1982 by Breeze/QSD, Inc.

BASIC/S II Documentation Page 1

* BASIC/S II COMPILER *
* <C> 1982 by Bill Stockwell and Breeze/QSD *
* -Version 1.5 for Mod I and III- *
* -All Rights Reserved- *
* Published by: Breeze/QSD, Inc., Dallas, Texas *
*

Getting Started Using BASIC/S II:

IMPORTANT!! There is a variable in BASIC/S which tells BASIC/S what
disk operating system you are using. Currently, this is used so that
LOF calculations will be done properly ie when you compile a
program that does an LOF calculation, it is important for the
compiler to know what DOS is being used so that this calculation will
be dom? properly. (The assumption is that you will run your /CMD
files under the same system that they were compiled on. If this is
not true, you can change the value of this variable as explained
below and recompile under the other DOS>. This is discussed under
"Options", when you e>:ecute BASICS! I.

On the disk you receive, there will be just one copy of
BASICSII/CMD, one of COMPILE/DAT, and some supplementary demo and
utility files. Copy these to a disk of your own. One of these files
is REMPER/BAS, a utility useful for those who have programs written
for the original BASIC/S (the original BASIC/S requires percent signs
after integer variable names, whereas BASICSII regards A-Z as integer
variables - no percent signs allowed!) REMPER will remove all percent
signs from an ascii BASIC file, so that it will now be compilable by
BASICSII so long as no real variables are used in it.

Another file is QUICK/BAS, which generates an integer array and
does a quicksort on it, and prints out the results.

Also there is BINHEX/BAS, originally by Tim Mann and rewritten by
Bill Stockwell into BASIC/S compilable form. This program is for
converting HEX files to/from /CMD file format. HEX files are the
typical way in which binary files are stored on bulletin board
systems for transfer via modem.

Finally on the disk is a utility for allowing BASICSII to handle
floating point values (in a limited way) (see the files FLOAT/TXT~
FLOAT/BAS, and SQR/BAS for more info on this>~

The version of BASIC which is supported is a subset of Disk
Basic. Only simple expressions and variable names are allowed,
but most of the features and built-in functions of Level II are
implemented, along with the essential elements of sequential and
random disk I/0. Floating point variables are not supported
(BASICSII/CMD is 40K as it is!), but integers~ strings, and arrays of

(c)1982 by Breeze/QSD, Inc.

BASIC/S II Documentation Page 2
type integer or string are allowed. Note: Unlike regular BASIC,
programs compiled by BASIC/S do NOT have any initialization of
variables done. Thus numeric variables do not start out as zero, or
strings as null. (See the CLEAR statement, however). One advantage
of this approach is that one compiled program can invoke another
(using the RUN statement) and all variables will be preserved.

Use of constants in BASIC/Sis somewhat restricted; many statements
allow (integer) constants; most statements do NOT allow string
constansts. See the section below on the individual statements for
more details.

You
here
they

may have multiple statements
is that IF, GOTO, and GOSUB
are on (as must ON GOTO).

per line; the only restriction
statements must begin the line

Look over some of the sample
statements are to be coded. The

programs
synta>:

on
must

the disk to see
be followed ••••

how

-------> EXACTLY~~ ~-------

••• however, the spacing is up to you. Thus, you could say FOR I=1 TO
N or you could say FORI=1TON. The compiler allows the following
variable names (all single letters): integers A thru Z and
strings AS thru ZS. Also, you may dimension arrays (of either type),
and your array names can be any length, with every character
significant. See the DIM statement for more on this.

REQUIREMENTS:

A TRS-BO(c) Mod I or III with at least one drive and 4B1<.
Repeat ••• 4BK~ Two drives are certainly preferable.

RUNNING THE PROGRAM:

Just type BASICSII from Dos Ready. Be sure that you do not have too
much in high memory -- if HIGH$ is less than FEOOH~ the compiler may
run out of string space (or other strange errors may occur). If vou
are running Mod I LDOS, you can run Lower Case and PDUBL, but not
much else in high memory. For best results, run with HIGHS (HIMEM> =
FFFF, if possible.
(Note on LDOS 5.1 far Mod I - you may have PDUBL and KI/DVR in high
memory - nothing else - to use BASIC/S II. When you SET KI/DVR, do
NOT use type ahead).

After BASICS!! begins, you may remove the disk containing
insert the one with COMPILE/DAT, if necessary, (if you have
drive, this must be a SYSTEM disk). Remember -- COMPILE/DAT

(c)19B2 by Breeze/QSD, Inc.

it, and
only one
must be

BASIC/S II Documentation Page 3
on line AT ALL TIMES while you compile, as well as the program you
wish to compile (saved in ASCII!).

REPEAT ...• your program to compile MUST be saved in ASCII!

e.g. SAVE"BASPROGM/BAS",A <enter>

<the /BAS e>:tension is NOT required)

Now BASIC/Swill ask:

Source:
Object :
Options:

(one after another). Typically, you will answer the first two
questions, and hit <enter> on the last one. "Source" is the name of
the file to be compiled, and "Object" is the name of the /CMD file
you want to create from "Source". Thus if you had an ASCII BASIC
program called TEST/BAS that you wanted to compile, you might answer
the above with:

Source: TEST/BAS
Object: TEST/CMD:2
Options : (enter>

The options you might take are as follows:

You can specify Start Address, whether or not to list the source
file to the video during the compile, whether to disable the <break>
key (for the compiled code), and what DOS is being used. Any or all
may be specified~ but those that are used should be in the correct
order. The start address tells BASICS!! where in memory your object
file should load to -- the default being 5200H (20992 decimal). The
address MUST be a decimal integer, but can be positive or negative;
ie D6D8H is represented by either 55000 or -10536; BASIC/S knows what
you mean.

Use the letter N to indicate No list - BASIC/S normally lists
your source file to the video as it compiles, but if you don~t want
this, just answer Options: with ~N~ (after the address, if there is
one). You might want to do this if you were getting a lot of errors
which were scrolling off the screen too fastv

You can specify the DOS you are using via:
S=x (x being an integer value).

Use:
4 for DOSPLUS 3.3
5 for LDOS
1 for Newdos/80 and DOS+ 3.4
0 for any other DOS
The default is 5 CLOOS).

(c)1982 by Breeze/QSD, Inc.

BASIC/S II Documentation
TRSDOS <Mod III) is _N_O_T __ S_U_P_P_O_R_T ED.

Page 4

To start the /CMD file at 56000, with no listing~
TRSDOS, you would answer 'Options' with

and using Mod I

Options: 56000~N,S=O

Note that the S= option is important ONLY if your source file
computes LOF's. Also note that BASIC/S accepts lower case responses.

A new option, added in version 1.1 of BASIC.IS II, allows you to
disable the break key while the BASIC/S /CMD file that, is created
executes. This is done by typing the letter "B" among your options -
like the other options, this must come AFTER any address. Doing this
will cause the following to occur: during input, while a BASIC/S
/CMD file e>:ecutes with the 11 8 11 option, if the <break> key is typed,
then a line feed is done and the input starts over at the beginning.

THE BASIC/S SUBSET (Statements supported under BASIC/S) . .

PRINT

followed by a SINGLE variable name, or an e>:pression in
quotes. Thus:

PRINT A or
PRINT"Message" or
PRINT R$

Also, you may use a semi-colon after anything being
printed in order to suppress the carriage return.

PRINT@ is also supported -- just set
variable (or constant) to the value of the

any integer
location to

be printed at, and you may then use any of the above forms
with it. Thus:

PRINT@N,"TRS-80";

It is important to note that you may NOT print a list of
items when using BASIC/S; only one item <of any type) may be
PRINTed at a time. The same applies to INPUT.

LPRINT

Synta>: for LPRINT is in every way the same as for
PRINT, except of course that LPRINT@ has no meaning.

(c)1982 by Breeze/QSD, Inc.

INPUT
BASIC/S II Documentation Page 5

You may input a single variable, of any type. You may
not input a list of variables, but INPUT"PROMPT";A is
supported (or A$).
When executing a Basic/s compiled program, if input is
requested, hitting the <break> key will cause an exit
If in answer to an input prompt, you hit <Enter> only,

then the variable being inputted remains unchanged and
the program continues (just like regular BASIC -- and this
holds regardless of variable type.

LINE INPUT

RUN A$

DEFINT

CLEAR

LINE INPUT from the keyboard is supported. Synta>:
is exactly as it is in BASIC. You may LINE INPUT an
integer variable if you wish, although this would
not work in BASIC.

e.g. LINE INPUT A$ or
LINE INPUT "Prompt";A$ (just like in BASIC>

This statement allows you to set a string (A$ in this
case) to any DOS command, or the name of a command file
you wish to invoke, and to exit the current program and
have that command e>:ecuted. Do NOT say RUN"PGM"; this
will be not be correctly compiled~ Also, RUN by itself
is incorrect.

For compatibility with the BASIC interpreter, you may
use this statement (as in DEFINT A-Z>. No other DEF
statements are accepted, and this one only reaffirms what
BASIC/S II does anyway - regards all variables as
integers unless they are suffixed with~$~.

This statement, with or without an argument, will cause
BASIC/S variables to be zeroed out. It depends on where
your /CMD file starts; if your /CMD file is in low
memory, then all memory from 41216 (decimal) up to
HIGH$ will be zer-oed out, while otherwise 5200H up to
D6D8H is zeroed out. This makes sure that your- /CMD
file itself will never be affected~ but that your
variables will be zeroed. This works equally well on

(c)1982 by Breeze/QSD~ Inc.

GOTO In

ON GOTO

BASIC/S II Documentation Page 6
the Mod I or the Mod III - BASIC/S knows which machine
you are running it on~ and will use the correct HIGH$
for your machine. DATA will also be cleared, and an
automatic RESTORE done so that the DATA pointer will be
correct.

The GOTO statement -- works just as in BASIC, but it MUST
BEGIN the line it is on. Thus CLS:GOTO 20 will not
work, although no message would be given.

As in BASIC, e}:cept that the inde>: must be a simple
variable (not an e>:pression). Thus

ON X GOTO 20,30,1000

No limit on the number of different lines you can
branch to, other than the limitation of 255 chars
per line. ON GOSUB is NOT supported. Like IF, GOTO,
and GOSUB, ON GOTO statements must begin the line
they are on.

GOSUB In

The standard GOSUB statement, but like GOTO, must
begin the line it is on.

READ/ DATA/ RESTORE

RESTORE

Your program may have DATA statements, containing
integer constants only (as in DATA 1,2,3) -- in all of
your DATA statements you can have a total of 383
integers (no more). It is important that these DATA
statements come before the READ statement(s) that are
to access them (physically before~ that is) -- the
compiler generates code to place the data in memory
when the DATA statements are encountered. Synta>: for
the READ statement is READ N -- you can read only a
single integer variable, which would normally be done
in a FOR/TO loop. One big use for this is to poke DATA
for a USR routine into memory. Before BASIC/Sallowed
READ/DATA, this process was rather clumsy.

works just like in standard BASIC.

(c)1982 by Breeze/QSD, Inc.

IF

BASIC/5 II Documentation Page 7

A very restricted IF statement -- you may only compare
two strings (for equality or in the< direction),
or two simple integers (variables or constants).

Thus (for strings) :

or
IF A<.!i<B<.!i THEN 20
IF A$=B$ THEN 100

The compare must be in the'<' direction only, or with
'='. You may check whether a string is null via

IF A$="" THEN 200 (for example)
but this is the only time you may test a string against
a constant.

For integers :
IF A=B THEN 100

or IF A<B THEN 50
(and either A or B may be an integer constant~ as
in IF A<72 THEN 200 >.

Note:
begin the
supported:

GOTO, GOSUB, and IF statements MUST
line that they are on. Also, ELSE is now

you may follow any IF statement with ELSE, followed
by as many statements as you can fit on one line, so
long as they do not need to start the line they are on.
Thus IF, GOTO, GOSUB, and ON GOTO statements may not
follow an ELSE, but any other statement may do so.

FOR/NEXT

LISR

The For/Ne>:t loop is implemented for INTEGERS only. You
may code

FOR A=B TO C

NEXT A

Constants may be used where Band Care indicated,
as long as they are integers (positive, negative, or
zero).
The variable in the NEXT statement is NOT optional.
There is no STEP clause.
FOR/NEXT loops may be (statically) nested.

A single LISR call is allowed. It must be set up by

(c)1982 by Breeze/QSD, Inc.

DEFUSR,
decimal

BASIC/S II Documentation
and the calling

integer constant.

DEFUSR=-1000

address
Thus:

must be a
Page 8

simple

Note: There is no VARPTR statement. However, the
addresses of all simple variables in BASIC/Sare always
the same and may be calculated as follows:

If A is the ascii code of the variable in question, then
the VARPTR is:

INTEGERS: -11406 + 2 * <A - 65);
STRINGS : -23192 + 256 * <A - 65).

Strings are stored a little differently than in Level
Ila Each string is allocated 256 bytes, the first of
which contains the length of the string (0 to 255) and
the rest of which contain the string itself. The
Varptr points to the length byte.

Y=USR<X>

This causes the routine whose address was defined by a
previous DEFUSR statement to be called. The current
value of Xis loaded into the HL register pair before
the call is made, and on return, Y is given the value
in the HL register pair. Do NOT call the ROM routines
at OA7F and OA9A for this. Any integer variables may
be used, not just X and Y. Also, a (decimal) integer
constant may be used as the argument to be passed.

SET, RESET, and POINT

Use integers (either variables (followed by) or
constants) as the arguments. As with most BASIC/S
functions, they may not be used in more complex
e>:pressi ons. Thus

SET<X,20)
A=POINT<B,C)

The latter is the only way to access POINT - it cannot
be invoked in an IF statementa

PEEi< and POl<E

Exactly as in Level II, except that
the arguments must be integers -- (constants
or variables). Thus

A=PEEl<(M)

(c)1982 by Breeze/QSD, Inc~

BASIC/S II Documentation
POKE A,B
POKE 15360,191
Z=PEEK (14312)

Page 9

INP and OUT

AND/OR

Syntax here is just like that for PEEK and POKE,
i.e. you may use integer variables or constants
as the arguments (no expressions).

A=INP(P} (input a byte from port P and
store in A)

OUT P,V (output value V to port P)
OUT 255~1
S=INP(232)

You may use these two functions in order to calculate
an AND/OR result (for integer variables or constants)
and store the answer in an integer variable. Thus

X=Y AND 20
U=A ORB

CLS -- Clear the screen

RND

DIM

Random integers between 1 and N may be generated by the
statement X=RND(N). The left hand side may be any integer
variable. The argument is required and may be an
integer constant if you like. The statement RANDOM
is also supported, to reseed the random number
generator.

You can DIMension up to 20 arrays in a program to be compiled
with BASIC/S - they can be either integer or string,as
distinguished by the presence of a$.

Array names may be any
length (up to 255) with every character significant.
ONLY letters A-Z should be used within an array name.
Thus

DIM ARRAY(20~7>,ST$(15)

You may have one or two dimensions for each array - no

(c)1982 by Breeze/QSD, Inc.

56000;

SCAN

BASIC/S II Documentation Page 10
more. DO NOT use BASIC keywords in your array names.
Be careful about your available array space - BASIC/S
will tell you if your array space will overlay BASIC/S
data areas or will exceed the 64K memory limit.
If this happens, try recompiling with a start address of

this will give you about 19.75 K of space for your arrays,
as it puts your /CMD file in high memory instead of low.
Still, 19.75K is only enough room for a string array of
dimension 79 (79 * 256 = 20,224). With integer
arrays, you can use much larger dimensions.

Syntax for using array elements:
For the most part, you can use your array variables just
like any other variables; and you may always use integer
constants (as well as variables) for the subscripts).
Thus

READ NUM(I>
INPUT ARRAY<?>
PRINT ST$(U);
A$=LEFT$(ST$(5),NUM(I))

The exceptions are as follows:
When an array element is on the left hand side of the
'=' sign, the right hand side MUST be a simple variable
or constant of the same type - no e>:pressions al lowed.
Thus ST$(1)=LEFT$(A$,2)is not allowed; you would need to
set H$=LEFT$(A$,2) and then ST$(l)=H$. However, it is
OK to set an array element to a constant, as in
ST$(5)="HELLO" or ARRAY(14,6)=12.
Also, any statement that references an array element
should contain NO numeric constants of any kindir e>:cept
for (possibly) subscripts to the array itself.
One exception here is that array elements may be
compared via the IF statement, and the line number
reference will not be misconstrued. So

IF ST$(1)<ST$(I> THEN 75
is OK; just be sure to follow the synta>: in all other
respects. But something like

LINE INPUT#1,ST$(I)
or PUT 1 , L (I)
won't work as the '1' will be misunderstood, and translated
to a temporary integer variable, which won't work.
Thus in general, the statements in which you may not
reference array elements are most of the DISK I/0
statements <OPEN, FIELD; GET, PUT, LINE INPUT#,
PRINT#), and PRINT@.

This statement allows the user to "scan" a file or device for a
single byte (similar to INKEY$ for the keyboard). First you OPEN the

(c)1982 by Breeze/QSD, Inc.

BASIC/S II Documentation
file or device in question for input; then

Page 11

SCAN b,A$

will read a byte from the file or device with DCB# b (must be a
constant, 0-9} into A$.

SET EDF

(For use with LDOS only). This statement allows you to truncate
a random access file at a specified record. If you have a random
access file <DCB 1 or 2 only, in BASIC/S) open~ then to cause it to
have 50 records (instead of say 100), just GET 1, R (where R=50} and
then SET EOF1 (exactly as in LBASIC). Of course you need to close
the file to make sure the directory entry is updated. This could
also be done via PUT instead of GET; you just need to be positioned
at the correct place in the file before you do the SET EDF. DO NOT
try to SET EDF past the EDF - this bomb out with a DOS error.

CMD A$

Allows you to temporarily e>:it from your BASIC/S compiled code and
e}:ecute
program
command
command
starting
56000 ~ >.

a DOS command~ and have control returned to your compiled
afterwards. Just set any simple string variable to the

you wish to e>:ecute, and then do a CMD A$. Be sure the
e>:ecuted does not overwrite your code; compile your program
at 7000H or higher to avoid this problem (or even at

ON ERROR

A limited form of error trapping is possible with BASIC/S.
In this form, you may trap for DOS errors only, not errors in BASIC
or ROM processing. There is no ERL or RESUME in this form; all you
can do is take some action based on the DOS error that occurred.
First you establish your error trap routine with ON ERROR. Your ON
ERROR statement MUST occur AFTER the line in your error trap routine
you want to branch to; thus

50 ON ERROR GOTO 100
is no good since 100 comes later than
normally start out with a jump around
trap, to your ON ERROR statement :

10 GOTO 40
20 A=ERR

50. So your program
the first line of your

(c)1982 by Breeze/QSD, Inc.

\l'lOUl d
error

BASIC/S II Documentation
30 GOTO 2000:'main error routine at 2000
40 ON ERROR GOTO 20

Page 12

BASIC/S must already l<NOW where in memory your error routine will be
when it encounters the ON ERROR statement; hence the requirement for
the error trap to come before ON ERROR.
The very FIRST thing your error trap must do is set some integer
variable to ERR, to grab onto the error code. If you wait to do
this, ERR will change and not be relevant. Finally, the code
returned in ERR is the same as the DOS error codes that are explained
in your DOS manual, which are returned in register A whenever a DOS
error occurs. For example, if ERR were 24, this would indicate 'File
not found'.

ASSIGNMENT statement :

Following are the allowed forms of the assignment statement.

INTEGERS:

Integer arithmetic is limited to +,-,*,I and only 2
operands allowed on the right hand side. No builtin functions
for integers. Constants may be used, however.

Thus:
X=A*B
X=5-B

Note that unary minus is not allowed here (for variables) ie X=-Y+Z
is no good, while X=Z-Y is OK. However, with constants you may use
unary minus freely. Anything of the form X=AsB is OK, where A and B
are integer variables or constants ands is one of +,-~*,I, as long
as you don"t have two minus signs adjacent.

STRINGS

A$=B$
A$="constant"
A$=B$+C$ (simple concatenation}

Also we have the builtin string functions ASC, LEN,
CHR$, LEFT$, VAL, RIGHT$, MID$, STR$, and INSTR.
Where numeric arguments are required in the
string functions, simple integer variables or constants
must be used - no expressions. The actual string arguments
cannot be constants, but:

A$=LEFT$(X$,2)

(c)1982 by Breeze/QSD, Inc.

HEX$

BASIC/S II Documentation
(for example) would be OK.

Page 13

Also. expressions must be reduced to their simplest
form e.g., concatenation within a function or
function composition is not allowed. Break it down•

Note: The INSTR function differs from the regular
DISK BASIC one in that no starting position may be
specified -- syntax 1s just N=INSTRCAS,BS).
However, unlike previous versions of BASIC/S, ALL of
BS is searched for, not just the first character.

MIDS note -- you can use MID$ on the left hand side
of the= sign, and in that case, you can use either
of the two forms MIDS(AS,N)=BS or MIDS(AS,N,L)=BS
but they will give the same results, i.e. the length of
BS is used, Lis ignored in the second form. If the
source string (B$) is null, nothing is done.

Note III: The INKEYS function is implemented, and
must be used in the form: AS=INKEYS (or B$, etc.).

This is a hex conversion function, not supported by
TRS-80 Disk Basic, but is supported under Microsoft
BASIC-80 (and by their BASIC Compiler). BASIC/S II also
supports it; what it does is to take an integer argument
<variable or constant) and convert it to a hex string
equivalent in value to the original integer. Thus

AS=HEXS<-1>:PRINT A$

would print out "FFFF" (no quotes).

DISK I/0 statements

Essentially, you have ten disk I/0 buffers available
for use (0-9), all of which may be used for sequential access,
and two (1 and 2) of which may be used for random access. Here
are the specifics:

OPEN

The OPEN statement is essentially that of disk BASIC,
except that the filespec must be a string variable and
not an expression in quotes. Syntax is

OPEN"m",b,FS<,r>

(c)1982 by Breeze/QSD, Inc.

where m
b

F$
r

BASIC/S II Documentation
=mode= I~O,R, or E
= buffer = (0-9) (constant only)

(must be 1 or 2 for direct access)
= filespec (variable only)

Page 14

= logical record length (optional -- may be
either an integer constant or an integer
variable).

BASIC/S makes few restrictions on your use of the
disk I/0 statements, so be careful. For example, if
you wanted to open a sequential file with an LRECL of
16, you could. However, you would probably be well
advised to stick to direct access files for this!

OPEN"E" is like OPEN"O" e>:cept you start out
positioned at the end of the file.

Sequential I/0 is done with the LINE INPUT# and PRINT#
statements. Just specify a buffer number adjacent to the #q
and you are ready to go. Only a simple string variable may

be input or outputq although PRINT#1,A$; will disable
the carriage return.

Random disk I/0 is accomplished via the following:

FIELD

LSET

You must field your buffer in order
between your strings and the disk file
Synta::>: is :

FIELD 1.nn AS A$,mm AS B$,

to communicate
being accessed.

-- the buffer can be 1 or 2, the strings can be any of
A$ thru Z$ (no array references allowed here!>, and
the numbers 'nn', 'mm' etc. must be integer constants
(1-255 -- 0 is not allowed). Also you can't really use
a multiple FIELD stmts for the same file -- the
second will override the first. Moreover, the
statements to process a random access file must be
statically nested -- i.e. do not GOSUB or GOTO a later
line to FIELD a buffer and then return to do your LSETs
and PUTs, etc. Just OPEN the file, FIELD the buffer~
process it, and CLOSE it, without GOSUBS and GOTOS.
<At least, don't branch anywhere outside the range
of statements between the OPEN and CLOSE stmts).

To place your strings into the buffer prior to being

(c}1982 by Breeze/QSD, Inc.

PUT

GET

LOF

BASIC/S II Documentation
PUT to the disk, use LSET. Thus

LSET A$=B$

Page 15

where A$ is one of the strings mentioned in your FIELD
statement. If LEN(B$) is less than that of the field
variable A$, it will be filled out with spaces in the
buffer. If greater, only the leftmost portion of B$
(for the fielding length of A$) will be in the buffer.

Synta>: is PUT b,N where b is the buffer number (1 or
2) and N is any integer variable, containing the
record number to be put. The record number variable is
not optional.

As in GET 1,R -- gets the Rth record from the disk
file, and places its contents into the string variables
mentioned in the FIELD statement.

The LOF function is implemented and synta>: is

N=LOF(b)

where b is the buffer number (1 or 2 -- must
constant). This returns the number of records
currently open file with buffer b.

be a
in the

CVI and MKI$

CLOSE

For convenience in reading and writing integers
from/to direct access files, these functions are
implemented as in TRSDOS. In case you were mystified
as to exactly what they did -- well~ if the integer N
has the 2 byte representation (L,H>, then MKIS<N> is
just CHR$(L)+CHR$(H). CVI just does the exact reverse.
As with most BASIC/5 functions, these may be used only
with simple integer/string variables.

There is no global close in BASIC/5 -- you must mention
the buffer number. Thus,

(c)1982 by Breeze/QSD, Inc.

BASIC/S II Documentation Page 16

CLOSE 5

would close the file with
a file that isn't open,
'FILE NOT OPEN'.

buffer number
you will bomb

5. If you close
out with

EDF

This isn't a function as such; it is to be used in a
special form of the IF statement to check for EDF when
inputting from a file. Simply say

IF EOF(b) THEN 200

{or whatever line number) to check for end of file on
buffer b (0-9)

BASIC/S Memory Map

Following is a map of memory from 5200H up to HIGH$, showing
how BASIC/S uses the memory in your TRS-80 (48K):

/CMD file in low mem

5200 ----------

your /CMD file

A100 ----------

in high mem

Array space (20K)

This area is always reserved for BASIC/S variables
and DCB's.

D7D8 ---------

Free area for your own use (e.g. USR routines).

DACO ----------

Array space
<DACO to HIGH$)

HIGH$----------

/CMD file

--------===========------====================================

(c)1982 by Breeze/QSD, Inc.

BASIC/S II Documentation Page 17

--DISCLAIMER OF WARRANTIES & LIMITATIONS OF LIABILITIES --

We have taken great care in preparing this package. We make no
expressed or implied warranty of any kind with regard to this manual
or to BASICS/II. In NO event shall we be liable for incidental or
consequential damage in connection with or arising out of the
performance of this program.

BASICS/II (c)1982 by Bill Stockwell and Breeze/QSD, Inc.

All rights reserved. No part of this manual and NONE of the programs
may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by
information storage retrieval system, BBS, etc. Registered owners are
entitled to make copies of the disk for their OWN use only!

Questions should be addressed to:

Bill Stockwell
4771 NW 24th #228N
Oklahoma City OK 73127
(405) 947-4156
Mnet 70070,320

Bill Stockwell may also be reached on the QSD Sig
on MicroNet. Leave a message to 70001,610 for info
or from the OK prompt, type R QSD<enter>.

Published by:
Power-Soft - a division of Breeze/QSD, Inc.
11500 Stemmons Expressway Suite 125
Dal 1 as, Te>:as 75229

TRS-80 and TRSDOS are registered copyrights of the TANDY CORP.
LOOS is a registered trademark of Logical Systems, Inc.
Newdos and Newdos/80 are trademarks of Apparat
Dosplus is a trademark of Micro Systems Software

(c)1982 by Breeze/QSD, Inc.

